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Power consumption and energy efficiency are becoming critical aspects in the design and
operation of large scale HPC facilities, and it is unanimously recognised that future exascale
supercomputers will be strongly constrained by their power requirements. At current elec-
tricity costs, operating an HPC system over its lifetime can already be on par with the initial
deployment cost. These power consumption constraints, and the benefits a more energy-
efficient HPC platform may have on other societal areas, have motivated the HPC research
community to investigate the use of energy-efficient technologies originally developed for
the embedded and especially mobile markets. However, lower power does not always
mean lower energy consumption, since execution time often also increases. In order to
achieve competitive performance, applications then need to efficiently exploit a larger
number of processors. In this article, we discuss how applications can efficiently exploit
this new class of low-power architectures to achieve competitive performance. We evalu-
ate if they can benefit from the increased energy efficiency that the architecture is sup-
posed to achieve. The applications that we consider cover three different classes of
numerical solution methods for partial differential equations, namely a low-order finite
element multigrid solver for huge sparse linear systems of equations, a Lattice-Boltzmann
code for fluid simulation, and a high-order spectral element method for acoustic or seismic
wave propagation modelling. We evaluate weak and strong scalability on a cluster of 96
ARM Cortex-A9 dual-core processors and demonstrate that the ARM-based cluster can
be more efficient in terms of energy to solution when executing the three applications
compared to an x86-based reference machine.

� 2012 Published by Elsevier Inc.
52
1. Introduction and motivation

Energy efficiency and power consumption have become one of the most critical issues regarding the design and deploy-
ment of a high performance computing (HPC) facility, or a data centre in general. While the combined power consumption of
HPC systems worldwide continues to be small in relative terms (2% of the total CO2 emissions), in absolute terms the cost is
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already extremely high, around 200–300 billion kW h [1,2]. This trend will further increase in the near future, and the cost of
energy is also increasing, which will soon lead to a critical situation owing to energy efficiency limits [3].

The most immediate concern is that the energy cost of an HPC installation over its lifetime (5–7 years) is already com-
parable to its initial cost of acquisition and deployment, see Section 3.2. This is important on all scales, and in both academia
and industry. In academia for instance, it is common – at least for medium-scale installations hosted by a single university –
that (governmental or regional) funding is only provided for the initial deployment of a machine, and the university or re-
search institution has to cover the total cost of running the machine for its lifetime. For instance it was recently announced
that the state of New Mexico, USA, would discontinue operations of its ‘Encanto’ system, which ranked #3 in the TOP500 list
when it was deployed in 2007, due to lack of maintenance funds.1

Since 2007, the Green500 list [4] ranks supercomputers similar to the well known TOP500 list, but based on the energy
efficiency (performance per watt) of the systems. Extrapolating the energy efficiency of the #1 system in the current
Green500 list, a postulated 1 exaflops system, i.e., 1018 operations per second, would require 500 MW of power, correspond-
ing to more than 500 million dollars per year for electricity alone. Many studies predict a feasible power envelope of 20 MW
for exascale machines, which requires a 25� efficiency improvement over the current Green500 leader and a 50� improve-
ment over current standard x86-based systems [5,6].

An analysis of current HPC systems shows that 40–60% of the energy consumption can be attributed to the compute
nodes (processors and memories), 10% to the interconnect and storage systems, and the remainder (up to 50%) is consumed
by the infrastructure itself, including lighting, power supply, and most of all, cooling [7,8]. Consequently, the largest returns
can be expected from improving the energy efficiency of the compute nodes, since any improvement there will also translate
into reduced cooling requirements.

It is also possible to improve the energy efficiency of a computer system by offloading parts of the application to a more
specialised hardware accelerator that achieves higher performance at a lower energy cost for a particular type of computa-
tion. Current representatives of such heterogeneous compute systems couple conventional x86-based CPUs with GPU accel-
erators, or the recently introduced Xeon Phi. However, such improvements come at the cost of major changes in the
application codes, which must be partitioned to offload computation to the accelerator and partly rewritten in the acceler-
ator specific programming model. While these heterogeneous architectures offer significant improvements in energy effi-
ciency, the investment required to rewrite production codes that have been used for years or decades is often difficult to
handle, which increases the pressure to find more efficient general purpose solutions.

There are several ongoing research proposals and industrial initiatives that suggest the use of devices originally designed
for the embedded and mobile markets in a high performance computing environment. These devices have been designed
from scratch to operate in energy and temperature constrained environments such as cell phones, which operate on batteries
and are stored in our pockets. Recent developments in mobile processors have included the addition of double-precision
floating point units, which is a necessary condition for them to become accepted in HPC. Their higher energy efficiency as
well as their large market volume, which drives prices down, make these devices a promising candidate in terms of perfor-
mance per watt and performance per dollar. Nowadays, the majority of such mobile devices are built on the intellectual
property of ARM Holdings plc. For instance, ARM’s 2011 annual report to investors [9] quotes constant market shares of
95% for handheld devices (smartphones and tablet computers) since 2008.

For these devices and systems built from them, the software environment is favourable to porting production codes: The
GNU/Linux tool chain has been supported on ARM processors for a long time, together with all major programming and
scripting languages such as Fortran, C/C++ or Python, as well as parallel programming models such as MPI and OpenMP.
The effort of getting an application up and running on an ARM-based system is thus identical to the effort on any classical
architecture, i.e., usually small. The required investment in manual tuning for specific (micro-) architectural features of these
processors is also comparable between classical and ARM designs, as their architecture is not as radically different as for in-
stance that of GPUs. In this article, we discuss a range of tuning strategies that are particularly important.

Low power also often means low performance: Mobile devices offer 10 to 100 times lower peak performance than their
high-end counterparts, but they do so at 100 to 1000 times lower power. As an example, the chips that we use in this work
deliver a theoretical peak performance of 2 GFLOP/s at roughly 0.5 W, while our reference x86 designs require a TDP (ther-
mal design power) of 95 W for a theoretical peak performance of 42.6 GFLOP/s. Thus, owing to the longer execution time,
lower power may not translate into lower energy. To achieve the degree of performance required by actual applications,
many low-power cluster nodes have to be used in one system. Very good weak and strong scalability of the (numerical)
methodology and the implementation are required simultaneously. Only then is it possible to distribute large ‘real-world’
problems over more nodes with less memory each and to compensate for lower single-node performance by using more
nodes.

For most non-trivial PDE (partial differential equations) applications this is highly challenging to achieve simultaneously,
and the behaviour is strongly application dependent. In this article, we employ a prototype ARM-based cluster that, given its
size, allows us to quantitatively analyse the power-performance trade-off (measured in time vs. energy to solution) for the
first time at a scale of interest for future HPC systems and for production codes solving real-world problems. We perform this
1 HPC Wire, July 12, 2012, ‘New Mexico to Pull Plug on Encanto, Former Top 5 Supercomputer’, http://www.hpcwire.com/hpcwire/2012-07-12/
new_mexico_to_pull_plug_on_encanto_former_top_5_supercomputer.html.
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analysis with three applications that address different performance and complexity characteristics; they cover several sci-
entific domains and we believe that they are representative of a wide range of scientific computing codes to solve problems
modelled by PDEs and discretised on structured and non-structured grids. These applications are a parallel locality-maximis-
ing finite-element geometric multigrid solver with very capable smoothers (FEAST), a fluid dynamics code based on the Lat-
tice Boltzmann method (HONEI_LBM), and a petascale-proven production code that can perform forward or adjoint
simulations of acoustic wave propagation modelling in the time domain at the scale of industrial or geophysical models
based on a spectral-element method (SPECFEM3D_GLOBE).
2. Related work

In the field of mobile computing, a multitude of different applications have been ported to execute on ARM processors,
including resource-hungry games and video and audio processing software. Gutierrez et al. [10] present benchmarks of the
microarchitectural behaviour of such applications on modern smartphones. However, the literature on scientific computing
on low-energy (ARM) processors and in particular ARM clusters is still pretty scarce; and most published articles restrict
themselves to ‘standard’ benchmark problems on a single node. Fürlinger et al. [11] have built a small five-node cluster from
Apple’s ATV2 set-top boxes. The underlying hardware is based on Apple’s A4 SoC (system-on-a-chip), which uses the ARM
Cortex-A8 processor. That article also includes references to cluster prototypes from other unconventional consumer-level
hardware that have been built before, e.g. based on the PlayStation 3 to benefit from the STI Cell processor [12], which sub-
sequently has been used in the first system in the world to have sustained a petaflop/s, the RoadRunner supercomputer at
Los Alamos National Laboratory (USA). Dasika et al. [13] evaluate various architectures, including ARM Cortex-A8 processors
and (mobile) Intel CPUs and GPUs, with respect to their energy efficiency for certain benchmark problems.

Low-energy computing is traditionally the domain of embedded systems, which require specialised tools and are noto-
riously hard to program. A hybrid approach is pursued by various vendors coupling conventional processors with x86-socket
mounted FPGAs, combined with compiler technology to more easily offload tasks to the FPGA. Augustin et al. [14] analyse a
recent representative system of this kind in detail and report issues of the compiler in the generation of optimised co-pro-
cessor code, and thus poor performance results for hybrid workloads despite a coherent shared memory space. Power and
performance of hardwired vs. general purpose architectures are discussed by Fan et al. [15].

Dynamic voltage frequency scaling (DVFS) is a technique implemented in modern processors to reduce energy consump-
tion by downclocking them when the load is lower. Etinski et al. [16] analyse software-controlled DVFS and its impact on
execution time and in particular energy to solution for a set of representative HPC applications executing on medium-sized
clusters; see also the references therein for an overview of the state of the art.

Adaptations of the GNU compiler suite to the ARM architecture, and in particular optimising for various size and energy
vs. performance targets, are subject to active research [17,18]. Energy-aware scheduling both in clusters and in the cloud has
also moved into focus recently [19,20]). Similar in spirit is the work by Lee et al. [21] on proactive cooling for large data
centres.

Algorithmic approaches to improving energy efficiency are also being pursued. In the context of scientific computing, one
prominent example is computing with reduced precision. The idea can easily be applied to schemes with explicit time step-
ping that do not suffer from ill-conditioning, such as the wave propagation and fluid dynamics codes that we evaluate in this
study, see Section 5. Assuming a contiguous layout of data in memory, halving the computational precision enables moving
twice the amount of values from memory to the CPU in the same time, more or less doubling the effective cache sizes mod-
ulo line size granularity effects, and doubling the effective SIMD width. Faster execution and data movement in single rather
than double precision can thus give an immediate energy efficiency improvement due to less time to solution. In addition,
low precision can also be more energy efficient for arithmetic and data movement in the hardware itself. For other applica-
tions, high precision is often not required at all stages and for all data. Mixed precision approaches (see [22] for a survey) can
provide a way of improving computational density and energy efficiency in such situations. Anzt et al. [23] recently per-
formed detailed measurements of mixed precision iterative refinement GMRES on multicore and hybrid CPU-GPU architec-
tures and concluded that the reduction in energy consumption is proportional to the performance improvement of the
scheme compared to executing entirely in high precision. In follow-up work they extend their approach to include more
fine-grained control of power consumption by evaluating DVFS and idle-waiting instead of busy-waiting [24].
3. Background

3.1. The power wall problem

In electrical engineering, the term power wall is often used to describe the issues and hard physical limitations related to
increasing compute performance without increasing the power envelope of a microprocessor design. We refer to [25–27]
and the references therein for recent discussions of the general power/performance trade-offs in microprocessor design
and on the optimisation problems that chip designers face. Table 1 summarises the physical background and implications
on performance improvements for the ‘old’ situation of frequency scaling up to 90 nm processes and the current situation.
The data in the left column highlight that halving the feature length yielded eight times the operation rate for the same
Please cite this article in press as: D. Göddeke et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application
study on a low-power ARM-based cluster, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.11.031
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Physical background of performance improvements until the 90 nm process (left) and for current
feature sizes (right).

Constant field scaling (old) Constant voltage (new)

Feature length L0 ¼ L=2 L0 ¼ L=2
Voltage V 0 ¼ V=2 V 0 ¼ V
Capacitance E0 ¼ CV2=2 ¼ E=8 E0 ¼ E=2
Frequency f 0 ¼ 2f f 0 ¼ 2f
Area A0 ¼ L2 ¼ A=4 A0 ¼ A=4
Power/area P0 ¼ Pf=A ¼ P P0 ¼ 4P
Operations/s/area f 0=A0 ¼ 8f=A f 0=A0 ¼ 8f=A
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power in a fixed area. However with current feature length scales it is no longer possible to halve voltage proportionally with
feature length, and consequently, achieving the same factor of eight for a fixed area requires four times the power. Thus, fre-
quencies can no longer be doubled with each die shrink, issues due to leaking voltage are more dominant, and some trade-off
between power and performance must be found.

Another important aspect of the power wall is the cost of moving data. The following example has been promoted by
W. Dally, and has been subsequently used in many conference presentations. For details (albeit in the context of embedded
computing with a stronger emphasis on the cost of moving not only floating point data but also instructions through pipe-
lines) we refer to [27,28]. A 64-bit FPU (floating point unit) in a standard yet hypothetical contemporary processor clocked at
1.5 GHz consumes approximately 50 pJ for a multiply–add operation and occupies 0.1 mm2 of die area (at some current fea-
ture size, the actual fabrication process does not matter for the sake of the argument). Moving one double precision word
through a channel of length 1 mm consumes 25 pJ, which means that for a chip with 4000 FPUs (and hence an area of
20 mm2), moving data across the chip requires 500 pJ. Moving the same data off-chip requires another factor of two, namely
1 nJ. This indicates that the well known memory wall problem does not stop at chip boundaries. Even more importantly,
projections to feature sizes expected for 2018 at the beginning of the exascale era in [5] indicate that ‘data movement across
the system, through the memory hierarchy, and even for register-to-register operations, will likely be the single principal contrib-
utor to power consumption, with control adding to this appreciably’.
3.2. System energy cost

Energy consumption data for scientific computing installations is rarely publicly available. Some data have been gathered
for the Bay Area by the ‘High-Performance Buildings for High-Tech Industries’ study performed by Lawrence Berkeley Na-
tional Laboratory (USA) [8]. One of the systems analysed is dedicated to computational science workloads, but due the ano-
nymisation of the data, only conclusions and recommendations regarding the efficiency of the infrastructure of the machine
can be deduced.

Nonetheless, we want to illustrate that the cost of operating a system for a typical lifetime of 5–7 years already amounts
to a significant fraction of its acquisition cost, dominated for the largest part by energy and personnel cost.

The first system that we report on in order to support this claim is a capability installation, the 1 petaflop/s ‘Hermit’ Cray
XE6 system installed in Stuttgart (Germany) at the HLRS. Officially published numbers2 for this system indicate approxi-
mately two million euros annually for energy and personnel, compared to acquisition costs of 22.5 million euros.

The second system that we consider has been designed for capacity computing: The ‘LiDOng’ machine operated by TU
Dortmund is a heterogeneous (i.e., different memory/CPU nodes) installation assembled by Hewlett–Packard in 2009. It
achieves 23 TFLOP/s in Linpack, resulting in the 253th rank in the June 2009 TOP500 list. Overall, there are 432 nodes (pre-
dominantly 3.0 GHz Intel Xeon ‘Harpertown’ quad-core processors) with a total of 3584 CPU cores and 8 TB of memory. The
interconnect is hierarchical, with a crossbar for all blades in each rack and a tree between the racks. 128 nodes are connected
via DDR Infiniband and all nodes are connected via gigabit Ethernet twice, in the compute network and the service and I/O
network. In addition to the compute nodes there are two management servers, two gateway servers, and eight fileservers
that provide access to a 256 TB Lustre filesystem. We provide these details because we want to emphasise that LiDOng is
a typical representative system. The raw energy costs of LiDOng amount to 260,000 euros per year. In other words, by
2013 its accumulated electricity cost alone will have exceeded its acquisition cost of approximately one million euros.
4. The ARM Cortex-A processor family and ARM-based systems-on-a-chip

4.1. ARM processor overview

In this article, we focus on the ARMv7 architecture family, or more precisely its so-called ‘application profile’ ARMv7-A
(Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9 and Cortex-A15). ARM itself only licenses processor designs but does not
2 http://www.uni-stuttgart.de/hkom/presseservice/pressemitteilungen/2011/119_hlrs.html.
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manufacture actual chips. Processors by other companies that target similar markets and include to some extent intellectual
property by ARM are the Qualcomm Scorpion/Dragonfly, Samsung Exynos, Texas Instruments OMAP, the Freescale i.MX ser-
ies, or the Marvell Armada and Sheeva designs.

We begin the description of the hardware with a brief overview of how the Cortex-A and other ARMv7 cores have devel-
oped into general purpose processor cores. For more detailed information, we refer to the official programmer’s guide and in
particular the technical reference manuals for specific processor instantiations [29,30]. Much of the information summarised
here can also (and sometimes only) be found in material provided by actual SoC (system-on-a-chip) vendors and/or technical
press. In our case, the Cortex-A9 processor design is included in an NVIDIA Tegra 2 SoC [31].

Development of application-oriented ARM processors. The main technical reasons for the current Cortex-A processor family
becoming more and more interesting for scientific computing tasks are that

1. processors prior to the ARMv7-A architecture did not support native floating point nor SIMD instructions,
2. symmetric multiprocessing (‘multi-core’) became available with the Cortex-A5, and
3. clocking regimes of 1 GHz and more became available with the Cortex-A8.

These three features combined with (a) area efficiency, (b) energy efficiency and (c) availability/cost-efficiency (all three
being a consequence of the architecture originating in the field of embedded systems) make them increasingly interesting in
scientific computing. Here (a) as well as (b) mainly result from a smaller instruction-decode unit than in x86 and specially-
designed instruction sets leading to small transistor counts and better code-density: Even compared to the lowest perfor-
mance Intel Atom core, Cortex-A9 processors have roughly half the die size and number of transistors, and they are an order
of magnitude smaller than high-end Intel Xeon or AMD Opteron processors. Note however that such comparisons from core to
core are a bit difficult to perform because for instance the Cortex-A processors use a level-2 (L2) cache that is implemented on
the SoC rather than in the processor, and thus not included in the per-core transistor count and die area. Nonetheless, the fac-
tor of 1/2 is a good average commonly found in the literature. On the other hand, their cost efficiency is driven by the power of
consumer markets. Up to early 2011, a total of more than 20 billion ARM processors have been shipped, with estimates by
ARM itself that a good quarter of all electronic devices contain at least one ARM processor [29]. For comparison, ARM states
three billion devices in total for the x86 architecture [29]. The first number is clearly influenced by ARMs diverse set of target
markets, in particular including all sorts of microcontrollers, the Cortex-M and Cortex-R profiles, and other non-Cortex de-
signs. In addition to the huge market volume, emerging performance-hungry applications for mobile devices such as video
encoding, gaming and communication – currently and even more in the future – imply high production amounts at compar-
atively low cost and a fast development of mobile processors towards better performance without losing energy efficiency.

Hardware details of ARMv7-A processors and development of the Cortex-A9. The ARMv7-A is a 32-bit, Harvard Load/Store (or
formerly RISC – Reduced Instruction Set Computer) architecture. The Load/Store attribute is however not the most important
distinction between this architecture and x86, as for the latter the boundaries between CISC and RISC are blurred: Complex
instruction sets for instance are clearly a CISC feature while SIMD attributes are close to RISC features. In the ARMv7-A pro-
cessors, storage and signal pathways are physically separate for instructions and data, and arithmetic instructions work on
registers only whereas dedicated operations realise access to main memory. The Cortex-A series continuously adopts fea-
tures known from high performance platforms, which can be seen for instance in its pipeline design: Where the older Cor-
tex-A8 had a 13-stage pipeline (and a separate 10-stage one for the SIMD instructions), the Cortex-A9 features a 9-stage,
dual-issue superscalar out-of-order pipeline with dynamic branch prediction. This is the major reason for the speedup be-
tween these generations at the same clock speed when not considering SIMD capabilities. In addition, the memory subsys-
tem has seen much improvement since the first Cortex-A5, which only comprised a small data cache on a single level. Where
the Cortex-A8 already supported up to 1 MB of L2 cache, the Cortex-A9 extends this to an (optional) amount of up to 8 MB of
L2 cache. The L1 cache of the Cortex-A9 has 32 kB for instructions and 32 kB for data. Even more important is the ability of
the Cortex-A9 to be arranged into multi-core designs (the so-called MPCore configuration) comprising up to 4 cores. This is
enabled by hardware support for cache coherency in a shared L2/ private L1 cache partition. More sophisticated production
processes and higher admissible clock rates have come along with the economic success of the ARMv7: Newer Cortex-A
based SoC are expected to be built in a 28 nm process and clock speeds of 1.5 GHz are becoming common.

The Cortex-A9 is produced in a 40 nm process, and typical clock rates are 1 to 1.2 GHz. Regarding floating point capabil-
ities, it is equipped with a fully IEEE-754 compliant FPU (called VFPv3-D16) capable of single and double precision arithmetic
as well as conversion between half and single precision. Fused multiply-accumulate and square root instructions are sup-
ported natively, and the FPU is considered to be the most augmented of all processors of the series owing to reduced oper-
ation latencies, out-of-order completion of load and store instructions, and support for speculative execution [32]. One
important aspect is that the advanced SIMD unit, called NEON, is an optional part of a Cortex-A9 MPCore. When available,
the NEON unit provides packed operations for 64 and 128 bit vector registers supporting integer and single precision floating
point arithmetic only, without native division nor square root. NEON is not available in the Tegra 2 SoC on which our exper-
imental evaluation is based.

Taking a brief look at the more advanced Cortex-A15, the trends in development continue: The pipeline (superscalar and
dynamic branch prediction) as well as caches (shared L2 no longer optional, error correction) and the memory system (more
translation lookaside buffers) are augmented, and clock rates of up to 2 GHz are possible. As the newest Cortex series rep-
resentative, the Cortex-A7 is meant to be a lower-power counterpart of the Cortex-A15 and will ship in 2014.
Please cite this article in press as: D. Göddeke et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application
study on a low-power ARM-based cluster, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.11.031
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4.2. The NVIDIA Tegra 2 SoC

The design of a SoC typically includes the integration of different processor cores/multi-cores or ASICs (application spe-
cific integrated circuits) alongside some memory system and bulk main memory. In case of the Tegra 2 this means a custom-
ised dual Cortex-A9 MPCore combined with a customised memory system (1 MB of L2 cache plus main memory) as well as
an ultra-low-power NVIDIA GeForce GPU. Here, we explicitly refer to a Tegra 2 of the first generation, based on the ‘Har-
mony’ development board similar to the SECO Q7 carrier board built into our test cluster. There are other Tegra 2 designs
that are not covered here. We deliberately ignore all other SoC components such as audio, video and wireless networking,
see Section 6. Main memory is low power DDR2 (LPDDR2) in single channel mode (1�32 bit with 667 timings, presumably
clocked at 400 MHz) resulting in an approximate peak throughput of slightly less than 2 GB/s. Its Cortex-A9 is customised
with a 1 GHz clock rate and the optional NEON units in the cores have been left out. Hence, there are two very important
aspects of this design to notice: This version of the Tegra 2 is not representative of current high-end ARM-based SoC designs,
as only two cores without SIMD are present; and a slow off-chip memory system is used. With the maximum possible
LPDDR2 configuration (1066-timings, 533 MHz clock rate, dual channel mode) more than 4.2 GB/s can in principle be
achieved. However, note that reduced bandwidth and lower clock rates are one of the major approaches to reducing energy
consumption of a SoC. The GPU only supports single precision and is not programmable by means of CUDA/OpenCL; this is
expected not to change with the recently introduced Tegra 3, but only with the Tegra 4 code-named ‘Wayne’. Programming
the Tegra 2 GPU component for general purpose computations is in principle possible using ‘legacy GPGPU’ techniques
through graphics APIs [33,34], an avenue that we do not pursue in this article.

4.3. Energy efficiency of ARM-based SoC designs and future trends

With respect to performance and energy efficiency we observe that mobile SoC designs begin to trade (extreme) energy
efficiency for performance. The major techniques that are power-hungry but beneficial for performance of a single core in
x86 have been or are being adopted, that is superscalarity, dynamic instruction issuing, large multi-level caches with ad-
vanced replacement policies, and complex branch prediction. Taking into account techniques for reducing energy consump-
tion at the SoC/socket-level common to both architectures, such as dynamic branch prediction, dynamic voltage/power
scaling (DVFS), translation lookaside buffers and gated clocks, the current and future ARM-based designs can still excel at
several points:

Explicit exclusion of instruction-set backward compatibility as well as compressed instruction sets such as the 16 bit
Thumb/Thumb2 sets makes the architecture more slim compared to x86 ones, minimising energy consuming transitions
on the instruction bus. In addition, many application specific tasks are performed by and offloaded to on-chip specialised
components such as digital signal processing (DSP) cores and other ASICs. Here the SoC synthesis is very flexible and
close-to-optimal energy efficiency could be reached, at the cost of increasing market prices. However, the most important
improvement for these processors regarding floating point arithmetic performance together with energy-efficiency for sci-
entific computing would be a fast and rigorous augmentation of the advanced SIMD units, which can enhance performance
with a very low increase in energy consumption. In this regard, x86 is far ahead, as illustrated for instance by AVX, the suc-
cessor of SSE.

A number of general trends can be deduced from announcements of SoC designs for products to be introduced in the mar-
ket in 2013/14, like the NVIDIA Tegra 4, the Qualcomm Snapdragon S4 or the Texas Instruments OMAP 5 (OMAP5430): All
designs are based on the Cortex-A15, with quad-core MPcore components, clock frequencies higher than 1.7 GHz and larger
L2 caches. Single precision SIMD (NEON) will always be integrated, with double precision SIMD looming on the horizon.
There is also a trend of making the SoC even more heterogeneous by integrating a lower-energy general purpose core, for
instance to execute the operating system and leaving the cores free for compute. Another important improvement that
has been announced is the switch from 32 bit to 64 bit. The GPU components are expected to support OpenCL, and in case
of NVIDIA designs, also CUDA C/C++. Finally, designs that are more tailored towards scientific computing or gaming rather
than mobile computing are being pursued, for instance NVIDIAs ‘Echelon’ research chip [35].
5. Applications

In this section we present the PDE applications used to evaluate the energy vs. performance trade-off in our experiments
and discuss the performance limitations that each code faces on conventional x86-based architectures as well as their
respective scalability challenges. We refer to a recent publication by some of the authors [36] for an initial performance
assessment for typical HPC (micro-) benchmarks such as STREAM and LINPACK.

5.1. FEAST – hardware-oriented geometric multigrid solvers with strong smoothers

FEAST (‘Finite-Element Analysis and Solution Tools’) is a toolkit providing finite-element discretisations and massively
parallel multilevel solvers [37–39]. It has been designed to carefully balance numerical capabilities (flexibility in the
discretisation, h- and Xi-independent convergence rates, robustness with respect to high degrees of anisotropy in both
Please cite this article in press as: D. Göddeke et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application
study on a low-power ARM-based cluster, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.11.031
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the differential operators and the underlying mesh etc.) with hardware exploitation. Starting from an unstructured coarse
mesh of quadrilateral patches Xi that are distributed to the available MPI processes, refinement proceeds in a generalised
tensor product fashion and a finite-element discretisation is applied to this hierarchical sequence of meshes. This approach
retains sufficient flexibility in resolving complex geometries, and all numerical linear algebra routines are performed in par-
allel on the patches with overlapped communication of the patch edges. A linewise numbering of the degrees of freedom in
each patch results in local banded matrices, e.g., nine bands for bilinear conforming finite elements. This fixed structure is
exploited in the implementation of numerical linear algebra routines that do not require indirect addressing, which both im-
proves cache utilisation and makes much better use of the available memory bandwidth. This is important because the per-
formance of sparse linear solvers is memory-bound on almost all modern architectures. In FEAST, this functionality is
implemented by the SBBLAS library (‘sparse banded BLAS’, [40]).

Multigrid solvers are the only algorithmically scalable and asymptotically optimal iterative schemes for sparse linear sys-
tems. However, in practice there are a number of issues with achieving textbook convergence, in particular due to the block-
Jacobi (patchwise additive) character of the smoother, an approach that is often applied to reduce communication require-
ments compared to fully multiplicative Schwarz decompositions. On complex meshes, convergence of block-Jacobi schemes
depends on the relative size and distribution of the patches, resulting in the loss of h- and Xi-independent iteration numbers.
The core idea of FEASTs underlying solver concept called ScaRC (‘scalable recursive clustering’) to alleviate this problem is to
hide local anisotropies as much as possible. In each patch, the banded matrix structure is again exploited in the design of
very capable hardware-friendly smoothing operators, and in this work we employ an alternating direction implicit (ADI) var-
iant of a combination of a Gauß–Seidel method with a tridiagonal solve (TRIGS), i.e., the application of one smoothing step
translates to inverting a system with all subdiagonals and the first superdiagonal, followed by computing a global residual,
virtually switching the numbering from row- to columnwise and again inverting an almost lower-triangular banded system.
Mesh transfer routines are tailored to the underlying finite-element space and exploit the local structure in a similar way.
Coarse grid problems in ScaRC are currently solved on a master node with the sparse direct UMFPACK solver [41].

5.1.1. Problem configuration
In this article, we do not execute full applications built on top of FEAST, such as the Navier–Stokes solver or the elasticity

code presented elsewhere [37,38]. Instead, we employ FEAST as a ‘mini-application’, which allows us generalise our findings
for this important numerical building block to any low-order finite-element method and other iterative solvers. We solve a
standard Poisson problem
Please
study
�Du ¼ f ð1Þ
using variations of the unstructured 2D ‘flow around a cylinder’ grid [42] as the coarse grid. Homogeneous Dirichlet bound-
ary conditions are prescribed on the outer boundary and inhomogeneous ones on the inner. The right-hand side is set to the
one-vector. The problem is discretised with conforming bilinear finite elements. We employ the ScaRC solver with the ADI-
TRIGS smoother described above, executing in an F-cycle with two pre- and post-smoothing steps each, and overrelaxation
by x ¼ 1:2. The stopping criterion is set to a reduction of the initial residual by eight digits. Double precision is required be-
cause the condition number of the linear system behaves as Oðh�2Þ. We deliberately do not apply a mixed precision scheme
as proposed in previous work [22] even though it would be advantageous, because the two other applications presented in
this article execute completely in single precision already.

5.1.2. Performance limitations on x86
As described above, the careful exploitation of the local structure for numerical linear algebra and multigrid smoothers is

realised in the SBBLAS library. The bulk of the work in FEAST is performed in two phases, the finite-element assembly of the
linear systems and the parallel solver. As is classical for (low-order) finite-element codes, the assembly and set-up phase for
communication are on the fringe between being compute- rather than memory bound, with a non-trivial amount of integer
arithmetic to account for the unstructured coarse grid. The solver is limited by memory bandwidth alone but there is con-
siderable room for cache exploitation, in particular in the matrix–vector multiplications and the ADI-TRIGS smoother. The
SBBLAS library is not cache oblivious. Instead, offline calibration runs are used to determine optimal cache blocking param-
eters for each new architecture.

5.1.3. Scalability discussion
Parallel multilevel methods may easily suffer from unfavourable communication-to-computation ratios and fewer oppor-

tunities to overlap on coarser levels of the multigrid hierarchy, especially since we employ an F-cycle to improve robustness.
Due to the unstructured nature of the coarse grid of patches, the amount of communication that each process performs can-
not be balanced perfectly despite careful scheduling to achieve equidistribution. Weak scaling is realised by subsequently
doubling the number of patches in the coarse mesh. As the patches exhibit strongly varying shapes (aspect ratios, inner an-
gles), algorithmic weak scalability in terms of iteration numbers is challenging. As usual, strong scaling is realised by distrib-
uting a fixed number of patches to more and more processes. As the load per node reduces, ‘cheap’ shared memory
communication between patches and bulk-transferring data of all patches per process can no longer be exploited. The
sequential solve of the coarse grid problem can become a bottleneck for very large runs.
cite this article in press as: D. Göddeke et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application
on a low-power ARM-based cluster, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.11.031
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5.2. HONEI_LBM – CFD simulations based on a Lattice-Boltzmann method

The second application is a parallel computational fluid dynamics (CFD) solver for, e.g., flows and free surface waves in
oceans, rivers or water tanks, supporting arbitrary geometries and bed surface profiles as well as dry states. The physical
behaviour is governed by the laminar 2D shallow water equations:
3 http
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@h
@t
þ @ðhujÞ

@xj
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@hui

@t
þ @ðhuiujÞ

@xj
þ g

@

@xi

h2

2

 !
¼ Sb

i ; ð2Þ
where h is the fluid depth, u ¼ ðu1; u2ÞT its velocity in the x- and y-direction, and g is the gravitational acceleration. In addi-
tion, we apply a source term Sb

i that internalises forces acting on the fluid due to the slope of the bed and material-dependent
friction.

A Lattice-Boltzmann method (LBM) is then employed to solve these equations numerically. Based on a two dimensional
Lattice with nine velocities (D2Q9) and a Bhatnagar–Gross–Krook (BGK) approximation of the collision operator and simple
bounce-back boundary conditions [43], the method can be summarised as
faðxþ eaDt; t þ DtÞ ¼ faðx; tÞ �
1
s
ðfa � f eq

a Þ þ
Dt
6e2 eaiS

b
i ; a ¼ 0; . . . ;8; ð3Þ
where fa is the particle distribution corresponding to the lattice-velocity ea and f eq
a defined as
f eq
a ¼

h 1� 5gh
6e2 � 2

3e2 uiui

� �
a ¼ 0

h gh
6e2 þ eaiui

3e2 þ
eajuiuj

2e4 � uiui
6e2

� �
a ¼ 1;3;5;7

h gh
24e2 þ eaiui

12e2 þ
eajuiuj

8e4 � uiui
24e2

� �
a ¼ 2;4;6;8:

8>>>><
>>>>:

ð4Þ
Macroscopic fluid depth and velocity can be obtained via
hðx; tÞ ¼
X

a
faðx; tÞ and uiðx; tÞ ¼

1
hðx; tÞ

X
a

eaifa: ð5Þ
The solver is built on top of the HONEI libraries3 in order to be able to use different target hardware platforms efficiently, in
particular an SSE backend for x86-type CPUs and an MPI backend for parallel computations. We refer to [44] and the references
therein for details on this approach as well as implementations and evaluations on several modern target platforms including
the Cell BE, GPUs, multicore CPUs, and clusters thereof.
5.2.1. Problem configuration
As a benchmark, we apply a full dam-break scenario over a 50m � 50m square region with initial water depth h0 ¼ 5m

and a collapsing cuboidal water region of dimensions 5m � 5m � 3m placed in the centre of the region. We also use an
uneven bottom bed topography defined by the function bðx; yÞ ¼ x2 þ y2 in order to apply the force terms described above.
5.2.2. Performance limitations on x86
Since the x86-optimised version of HONEI uses SSE instructions, it cannot be used on the ARM target platform (which

even lacks NEON SIMD units). We thus use a carefully tuned generic C++ backend for ARM.
We carry out all benchmarks in single precision, which is commonly done in explicit LBM codes for this kind of bench-

mark scenario. The kernels involved in the computation are mainly memory bound with the exception of the force calcula-
tion, which is slightly compute bound.
5.2.3. Scalability discussion
Parallelisation is performed based on domain decomposition of the lattice at the level of the Lattice-Boltzmann distribu-

tion functions, since virtually all work performed for each lattice site is independent of all other sites. We use a packed lattice
approach and pad each local array with a few ghost entries, allowing it to synchronise with its predecessor and successor. As
we use a one-dimensional data layout, each partition has only two direct neighbour parts to interact with. After each time
step each part sends its own results corresponding to subdomain boundaries to the ghost sites of its direct neighbours. As
soon as each part has finished these independent, non-blocking transfers, the next time step calculation can begin. Since the
Lattice Boltzmann method is explicit in time, the time step must decrease with increasing problem size to honour a Courant–
Friedrichs–Lewy (CFL) stability condition. The computations performed for all time steps are identical and thus what is typ-
ically measured in LBM codes is the throughput in terms of elapsed time per time step or lattice updates per second.
://www.honei.org.

cite this article in press as: D. Göddeke et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application
on a low-power ARM-based cluster, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.11.031

http://www.honei.org
http://dx.doi.org/10.1016/j.jcp.2012.11.031
Original text:
Inserted Text
- direction, 

Original text:
Inserted Text
Bhatnagar-Gross-Krook 

Original text:
Inserted Text
(

Original text:
Inserted Text
), 

Original text:
Inserted Text
Courant-Friedrichs-Lewy 



430

431

432

433

434

435

436

437

438

439

440

441

442

443

444
445
447447

448

449
450
452452

453

454

455

456

457
458

460460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

D. Göddeke et al. / Journal of Computational Physics xxx (2012) xxx–xxx 9

YJCPH 4342 No. of Pages 20, Model 3G

14 December 2012
5.3. SPECFEM3D_GLOBE – acoustic wave propagation modelling

The software package SPECFEM3D_GLOBE4 is an established petascale-proven [45] production code that simulates three-
dimensional seismic wave propagation in the time domain based upon the spectral-element method (SEM) on an unstructured
mesh of high-order hexahedral finite elements. It is widely used in geophysics (seismology) and in acoustic wave propagation.
The SEM is a continuous Galerkin finite-element method with optimised efficiency owing to its tensorised basis functions [46–
49]. In particular, it can accurately handle very distorted mesh elements [50].

SPECFEM3D_GLOBE targets the numerical modelling of seismic wave propagation in the whole Earth, or in large parts of
the Earth, following earthquakes. Effects due to lateral variations in compressional-wave speed, shear-wave speed, density, a
3D model of the crust of the Earth, its ellipticity, topography and bathymetry, the presence of the oceans, of rotation, and of
self-gravitation are included. Adjoint modelling capabilities and finite-frequency kernel simulations to solve inverse (imag-
ing) problems are also part of the code [47].

We seek to determine the displacement field produced by an earthquake in a finite Earth model with volume X. The
boundary of this volume is a stress-free surface @X on which waves are totally reflected. The Earth model may have any
number of internal discontinuities, such as interfaces between geological layers or faults. The displacement field u produced
by an earthquake is governed by the momentum equation, which in differential (strong) form is
4 http

Please
study
q@2
t u ¼ $ � r; ð6Þ
where density is denoted by q and the stress tensor r is linearly related to the displacement gradient $u by Hooke’s law,
which in an elastic, anisotropic solid may be written in the form
r ¼ c : $u: ð7Þ
The elastic properties of the Earth model are determined by the fourth-order elastic tensor c, which can have up to 21 inde-
pendent components in the case of general anisotropy.

In finite-element techniques one uses an integrated (variational, weak) form obtained by dotting the momentum equa-
tion (6) with an arbitrary vector w, integrating by parts over the model volume X, and imposing the stress-free boundary
condition, which makes the boundary term vanish. This gives
Z

X
qw � @2

t ud3x ¼ �
Z

X
$w : rd3x: ð8Þ
The SEM has very good accuracy and convergence properties [51–53]. It admits spectral rates of convergence and allows
exploiting hp-convergence schemes. All SPECFEM3D_GLOBE software is written in Fortran90 + MPI with full portability in
mind and conforms strictly to the Fortran95 standard. In what follows we have employed the full production code, which
comprises about 80,000 source lines of codes.

5.3.1. Problem configuration
In a preprocessing step, we mesh the region of the Earth in which the earthquake occurred and then split the mesh into

slices, one per processor core/MPI process. The mesh in each slice is unstructured in the finite-element sense, but the whole
mesh is block-structured, i.e., all the mesh slices are topologically identical and thus the whole mesh is composed of a regular
pattern of identical unstructured slices. Thus, all mesh slices and cut planes have the same number of elements, faces, edges
and points, which implies perfect load balancing and identical communication patterns between all MPI processes. In prac-
tice, in this article we mesh 1/6th of the Earth using a so-called ‘mesh chunk’ of angular size 90� � 90� centred on the North
pole and we implement an earthquake source near the North pole. The model of the structure of the Earth is the elastic iso-
tropic version of the PREM model without the ocean layer [54], which is a standard reference Earth model widely used in the
geophysical community.

In our spectral-element technique, to represent the wave fields we use Lagrange polynomial interpolants of degree N, de-
fined on ½�1;1�, built from N þ 1 Gauß–Lobatto–Legendre (GLL) points. In practice we use degree N ¼ 4 and thus each spec-
tral element contains ðN þ 1Þ3 ¼ 5� 5� 5 GLL points.

An important property of spectral-element methods for linear acoustic or seismic wave propagation is that single preci-
sion suffices for all the calculations performed in the code.

5.3.2. Performance limitations on x86
SPECFEM3D_GLOBE is a heavily optimised code that runs in production mode on large and very large scale systems

worldwide [55,45,56]. It is well tuned for cache locality [56] and also supports GPU-enhanced clusters [57,58].
Of the three main computational kernels, two perform simple updates on large global vectors of unknowns, which typ-

ically contain a few million degrees of freedom per processor core; thus they have the advantage of being trivially par-
allel, but they have the disadvantage of being memory bound because only a few operations are performed on each
://www.geodynamics.org.
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degree of freedom accessed in memory. The second computation kernel is more complex, it performs mechanical force
calculations and finite-element assembly at each time step based in part on small local matrix–matrix products. The
matrices correspond to cutplanes along the three directions of each ðN þ 1Þ3 spectral finite element described above; they
thus have a size of 5� 5, which is too small to benefit from calling a BLAS3 matrix product library; in SPECFEM3D_GLOBE
these products are thus implemented and unrolled manually, following an implementation introduced by Deville et al.
[52] and explained in more details in Section 7.5, which minimises the number of memory accesses to perform per finite
element.
5.3.3. Scalability discussion
In previous work on accelerators for SPECFEM3D_GLOBE [57,58] we underlined the need for excellent weak scaling. The

main argument was that if a scientist in the wave propagation field is given a larger machine, she/he will often fill it up to
90% typically in order to solve larger problems. But in many situations of practical interest in wave propagation, for instance
in geophysics, there is an upper limit in terms of the resolution that one can be interested in. A good illustration of this is
seismic wave propagation modelling at the scale of the entire Earth: in seismic data for the whole Earth there is a practical
upper limit around 1 Hz above which the data recorded in the field are contaminated by noise or too strongly affected by
viscoelastic attenuation [59]. Because of the very high cost of simulations at such high frequencies, currently the seismic
modelling community has not yet reached this upper limit and the goal is still to increase the maximum seismic frequency
at which calculations can be performed; the current largest runs ever performed on the largest supercomputers in the world
are still typically a factor two to five below that limit [45,60], and doubling the maximum seismic frequency of a given run
implies an increase of a factor of eight in memory storage and a factor of 16 in compute time for explicit time integration
methods. Once this limit is reached, weak scaling (i.e., solving larger problems if given a larger machine) will cease to be
interesting, and strong scaling will start to be the main goal again. This will be particularly true for adjoint/inverse acoustic
or seismic tomography problems, for which thousands of forward simulations like the one we investigate in this article need
to be performed [47,61–63].

Regarding our strong scaling study, in practice owing to the way the SPECFEM3D_GLOBE mesh is designed, a chunk of the
Earth cannot be cut into any arbitrary number of mesh slices and only certain combinations are allowed; below we will use
all possible combinations in order to get as many measurement points as possible. Regarding the SPECFEM3D_GLOBE weak
scaling study, we keep the time step of our time scheme constant by using a larger (physical) mesh when we use more mesh
slices, as in [57]. Doing so is fine, since the amount of work per MPI slice remains constant, which is the definition of weak
scaling.
6. Tibidabo – The first Tegra 2 based ARM cluster

The ARM cluster ‘Tibidabo’ at the Barcelona Supercomputing Center in Barcelona, Spain, is the first sufficiently large
ARM prototype enabling research towards energy efficient HPC systems, as pursued in the ‘PRACE’5 and the ‘Mont-Blanc’
projects.6 Tibidabo has 128 nodes, which are organised into blades. Each blade has eight nodes and a shared power supply
unit (PSU). The system runs an Ubuntu version 10.10 GNU/Linux operating system. Nodes, built around the SECO Q7 carrier
board [64], consist of an NVIDIA Tegra 2 SoC with a dual-core ARM Cortex-A9 processor and 1 GB of LPDDR2-667 memory
with a single-channel interface. The maximum amount of memory that is available to Linux is 896 MB (as 128 MB are allo-
cated to the Tegra’s GPU, which we do not use), and we found that allocating more than 865 MB for applications makes the
system unstable. Each node also integrates two network interface controllers (NIC) – 1 GBit Ethernet connected through PCIe
for MPI communication and 100 MBit Ethernet connected through USB for a remote network file system (NFS) holding both
user and system data, since the nodes of Tibidabo are diskless. The shared, relatively narrow-bandwidth high-latency
100MBit Ethernet connection to the file system constitutes a potentially severe bottleneck. We therefore made sure that
the codes used in our evaluation perform only the minimum amount of I/O necessary to output the timing results required
for our scalability studies, and we exclude costly preprocessing I/O (namely, the SPECFEM3D_GLOBE mesher as described in
Section 5.3) from our measurements.

The network topology of Tibidabo is arranged in a tree-like fashion. Switches are cascaded, with each group of 32 nodes
being connected through a first-level full-crossbar switch. Each node is reachable within three hops in the cascade.

According to the specifications, the CPU cores consume about 0.5 W [65] each, memory is responsible for an additional
0.4–0.5 W [66] and Ethernet controllers consume 1.1 W in total [67,68].

We measure 6.3 W for a single node when idle, and between 6.8 and 7.6 W under full load, depending on the application.
There is a substantial energy waste in system integration that does not contribute to computing, like circuitry and interfaces
for (unused) SATA links, HDMI, USB, RTC etc. Due to the prototypical nature of the machine and the fact that carrier boards
are designed for embedded development and not for HPC, these components (and also the GPU and the other unused com-
ponents in the SoC itself) are not power-gated. Furthermore, power supplies are shared between each group of eight nodes,
resulting in roughly 7 W PSU waste (0.9 W per node).
5 http://www.prace-project.eu.
6 http://www.montblanc-project.eu.
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7. Application performance tuning

In this section, we report on our experience of adapting and tuning the three codes to the Cortex-A9 architecture, and on
the microbenchmarks that we performed. Owing to the existing GNU tool chain, the effort we invested has been comparable
to that of tuning the codes for any other x86-based architecture. In particular, the effort of porting codes to GPUs with CUDA
or OpenCL is substantially higher.

7.1. Compiler optimisations

All our codes are compiled with GCC/GFORTRAN version 4.6.2, and we use MPICH2 version 1.4.1. In earlier versions of our
measurements we used GCC 4.4.3 and found that the newer compiler gave roughly 5% speedup, indicating continuous im-
provement in the optimisation backends of the compiler (see below and Section 2). We apply the following generic compiler
optimisation flags: -O3 -foptimize-register-move -fprefetch-loop-arrays -funroll-loops. Furthermore, we
apply several architecture-specific optimisation flags: -mcpu=cortex-a9-march=armv7-a-mtune=cortex-a9-

mfloat-abi=softfp-mfp=vfpv3-d16-mfpu=vfp. We refer to the corresponding GCC manual pages and Section 4.1 for
details about which features of the processor are enabled by these flags. Detailed experiments revealed that explicitly spe-
cifying the floating point ABI and the floating point unit (-mfloat-abi=softfp-mfp=vfpv3-d16) is mandatory for accep-
table performance, indicating that the GNU compiler suite optimises for size (and energy) by default [18,17]. For various
microbenchmarks, we measured up to 40% performance improvement by applying the latter two flags in single-core sin-
gle-node benchmarks.

7.2. Sustaining the available memory bandwidth

Despite explicitly specifying optimising compiler flags, we still measured only about half of the expected throughput for
STREAM-like microbenchmarks using only a single core. This was surprising, since the chip has only one memory controller.
We conclude that the available memory bandwidth of the ARM Cortex-A9 processor cannot be fully exploited with serial
codes. Adding OpenMP parallelisation to our microbenchmarks alleviated this issue: For large array sizes, we observed a
twofold performance improvement, i.e., we were able to achieve the asymptotically expected bandwidth. These findings
are supplemented by our timing results of the same benchmark for smaller array sizes, indicating that the OpenMP paral-
lelisation performed by the GCC compiler incurred substantial overhead: Even for a simple vector copy kernel we needed
– according to performance counters provided by PAPI [69] – at least an array length of 10,000 values to accommodate
for the overhead, substantially larger than for any x86-based architecture that we evaluated.

7.3. Floating point subnormal handling

Wave propagation codes with explicit time stepping such as SPECFEM3D_GLOBE potentially suffer from the way subnor-
mal (denormalised) numbers and underflows are treated, i.e., values that fall below the zero threshold of the floating point
format: Only floating point noise is computed at mesh points that the propagating waves have not reached yet, leading to
almost-zero values multiplied by a time step smaller than one being added to almost-zero values, which results in under-
flows. Many current microprocessors, including all x86-based designs that we have tested, switch from hardware to software
treatment of subnormal numbers. Forcing subnormal treatment to ‘flush-to-zero’ mode can thus yield substantial perfor-
mance improvements, as it removes the fallback to software.

We performed a quick set of experiments. On x86, the Intel Compiler Suite provides the -ftz flag to flush subnormals,
while the GNU compiler collection requires an explicit assembly language call to enable this mode.7,8 However, our exper-
iments for the Cortex-A9 architecture indicate that it flushes subnormals to zero by default, similarly to the first generation
of fully programmable GPU designs. Consequently, no additional compiler flag is necessary to achieve good performance for
SPECFEM3D_GLOBE.

7.4. Flat MPI vs. hybrid MPI + OpenMP

Motivated by the microbenchmarks related to achieving full memory bandwidth described in Section 7.2, we extended
the mini-application based on FEAST of Section 5.1 to fully support a hybrid MPI + OpenMP implementation. To this end,
we extended all kernels in the SBBLAS library to spawn two OpenMP threads as soon as the input array length exceeds
the approximate limit of 10,000. The results were non-ambiguous: The hybrid version was always slower than the flat
MPI version that scheduled two processes per node, both for measurements of the solver alone and for the full mini-appli-
cation: More precisely, using two MPI processes per node reduced the run time by 60% compared to using a single core (100%
would mean ideal scaling), compared to 40–50% for the hybrid version. Consequently, we use a flat MPI implementation of
all three codes in our experimental evaluation in Section 8.
7 http://stackoverflow.com/questions/9314534/why-does-changing-0-1f-to-0-slow-down-performance-by-10x.
8 http://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/.
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7.5. Cache blocking

The SBBLAS library of FEAST described in Section 5.1 contains several implementations of the numerical linear algebra
kernels required by the solver. The majority of the run time is however spent in only two kernels: residual calculation (ma-
trix–vector multiplication) and inversion of a six-banded ‘almost lower-triangular’ matrix (smoother application). We thus
analysed the matrix–vector multiplication kernel in more detail. In a loop over all entries of the result vector, it reads the
nine matrix bands and the right-hand-side vector. Data reuse via caching is only possible for the coefficient vector. This ‘na-
ive’ implementation already achieves quite good cache usage since the corresponding PAPI counters indicate that the coef-
ficient vector is read from memory approximately three times compared to nine times without any caching. A more
advanced ‘sliding window’ implementation [40] reads in data from three different chunks of the coefficient vector corre-
sponding to the three groups of matrix bands. Indeed, we measure approximately 30% fewer cache misses for this variant,
and consequently 30% fewer load instructions to off-chip memory. However, this version is overall 20% slower than the naive
implementation. The reason for this non intuitive behaviour is that the nested loop structure and the more involved index
arithmetic incur substantial overhead, despite aggressive manual unrolling.

Regarding SPECFEM3D_GLOBE, the cache optimisation in the internal mechanical force computation kernel, in which the
code spends approximately 90% of its time, implements an optimised approach proposed by Deville et al. [52] in which a
pointer to the linear memory segment that corresponds to one finite element is seen as different 2D sub-arrays with varying
leading dimension, resulting in substantially fewer cache accesses in the small per-cutplane dense matrix–matrix multipli-
cations, since each point is read from cache a minimised number of times and re-used from registers much longer. We
benchmarked both this version and the conventional implementation with strided indexing as well as redundant cache
accesses coming from nested loops but found no substantial performance difference on ARM. On x86-type CPUs however,
the [52] optimised implementation can be up to about twice faster [63].
8. Scalability evaluation and energy vs. time to solution

8.1. Weak and strong scalability

The per-core execution rate of the Cortex-A9 is slow compared to x86-based processors. Thus, weak scaling is relatively
easy to achieve because there is ample opportunity to overlap communications with computations. In strong scalability, the
same problem is distributed to an increasing number of nodes. The challenge then lies in the proportional reduction of the
load per node, making it increasingly difficult to overlap communication with computation. For example, the largest strong
scaling run below with SPECFEM3D_GLOBE only schedules a local problem size of 9 MB per node, which is very small and
thus results in a loss of scalability, at least on x86.
8.1.1. Weak scalability
For FEAST, the underlying configurations are chosen to consume roughly 430MB of memory per process, corresponding to

95% of the available memory per node. Each patch is refined eight times for a local problem size of 257� 257 grid points
(256� 256 elements) for a total of 24 patches per node. The largest FEAST run comprises 152 million degrees of freedom.

For the HONEI_LBM runs, we choose a comparatively small initial grid size of 250� 250, resulting in a final grid size of
2000� 2000 lattice cells for 192 processes. This small problem size per node allows us to investigate even better how well
the communication can be overlapped.

To evaluate SPECFEM3D_GLOBE, we again maximise the local problem size because this is common practice in the geo-
physics community as explained in Section 5.3. By allocating close to 419MB of memory per process, the largest run corre-
sponds to 680 million degrees of freedom.

Figs. 1–3(a) depict our weak scaling measurements for up to 192 MPI processes (not including the master process for
FEAST), i.e., 96 nodes (out of 112 available) of the Tibidabo cluster. HONEI_LBM and SPECFEM3D_GLOBE scale almost per-
fectly, as expected. For FEAST, we analyse the finite-element assembly (which includes the serial symbolic and numerical
factorisation of UMFPACK on the master node) and the linear solver separately. While there is a small loss in scalability
of the assembly due to UMFPACK being tasked with increasing problem sizes, scalability is still very good. Recall that we
execute the solver in an F-cycle and the depth of the mesh hierarchy is eight, so there are seven coarse grid solves for each
multigrid cycle. The run time increase of the solver for the two largest runs is a consequence of an increase in iterations from
four to five. To enable better comparison the graph also depicts normalised timings per cycle, indicating excellent scalability
of the solver despite performing the coarse grid solves serially, which involves all-to-one and one-to-all communication.
8.1.2. Strong scalability
For FEAST and SPECFEM3D_GLOBE we consider two different starting points taken from the weak scalability series and

increase the number of nodes from there. The two FEAST configurations correspond to 4.7 and 19 million degrees of freedom,
and the two SPECFEM3D_GLOBE runs are based on 13.8 and 56 million degrees of freedom respectively. The LBM code solves
for 2000� 2000 lattice cells, so that the starting point is not aligned with the weak scaling series.
Please cite this article in press as: D. Göddeke et al., Energy efficiency vs. performance of the numerical solution of PDEs: An application
study on a low-power ARM-based cluster, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.11.031
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Scalability of FEAST (Fig. 1(b)) seems poor at first for both the finite element assembly and the solver, especially in the last
doubling of resources. The main reason is that we suffer from a granularity effect in last step, i.e., the load per node is no
longer equally shared between the two cores in each node but rather split 2:1. If we factor this out, we observe the same
general trends as already discussed in the weak scalability analysis and the results are promising despite executing the
coarse grid solve sequentially. This component alone contributes a constant 0.1 and 0.2 s overall for the two series under
investigation, not including the required all-to-one and one-to-all communication. We observe speedups of 3.1 and 3.2 when
increasing the number of processors by a factor of eight; and when not taking the largest node number into consideration,
the speedups are 2.7 and 2.5 for quadrupled resources.

As illustrated in Figs. 2(b) and 3(b) the two other applications both scale very well since their behaviour is only limited by
the ability to overlap communications with computations, and such overlapping is clearly achieved on the ARM cluster un-
der study for the problem sizes under consideration. With SPECFEM3D_GLOBE we observe a speedup of 37 in the first series
from 4 to 192 processes, i.e., an increase in resources by a factor of 48; in the second series the factor is 3.3 when quadrupling
the resources. HONEI_LBM even scales superlinearly (34-fold speedup for 32 times the resources) because the chosen con-
figuration is small enough in the largest two runs to benefit from additional caching effects.
8.2. Energy vs. time to solution on Tibidabo and an x86-based reference system

As both weak and strong scalability on the Tibidabo machine are equally good for our three representative applications,
there is hope that compensating for slower execution compared to x86 by using more nodes is not offset by requiring more
energy to solution, i.e., power consumption integrated over the run time of the application. In what follows, we quantify this
aspect.
8.2.1. Reference x86 system
Our comparison is based on the Nehalem sub-cluster of the LiDOng machine installed at TU Dortmund, see also Section

3.2. Each node comprises a dual-socket quad-core Intel Xeon X5550 processor clocked at 2.66 GHz. Hyperthreading is turned
off in the BIOS. The clock frequency is reduced to 1.6 GHz for each core separately when it is idle. There are eight 2 GB DDR3
memory modules in each node and the network is twofold, with one 1 Gbit Ethernet connection for the Lustre filesystem and
one 1 Gbit Ethernet connection for MPI. The switch for MPI is a full crossbar.
8.2.2. Comparison methodology
The relation of memory capacity and core count between the two machines enables us to evaluate different energy-per-

formance regimes. Our baseline problem instances are those that we employed in the weak scalability analysis for Tibidabo
in the previous section. We now vary the mapping of these problem instances onto the LiDOng machine, see also Table 2.
From a memory point of view, 32 LiDOng nodes correspond to 192 Tibidabo nodes. In Configuration 1, we strictly use the
same load per core as on Tibidabo and do not change the problem partitioning, i.e., we schedule six processes onto each Li-
DOng node except for some of the small problem size runs that lead to infeasible partitions for SPECFEM3D_GLOBE, see Sec-
tion 5.3. In Configuration 2, we compensate for not using all available cores per node in Configuration 1 and repartition all
problem instances to use all eight cores per node. This configuration is not possible with SPECFEM3D_GLOBE for more than
half of the problem sizes, so we skip it completely.

These two configurations substantially under-utilise the available memory per node on LiDOng. In Configuration 3, we
evaluate the schedule of the problems to as few nodes as possible for a given problem size, and twice the amount of that
Table 2
Details of the mapping onto various LiDOng nodes for FEAST and HONEI_LBM (top) and SPECFEM3D_GLOBE (bottom).

Tibidabo Configuration 1 Configuration 2 Configuration 3 Configuration 4

Cores Nodes Nodes Cores/node Nodes Cores/node Nodes Cores/node Nodes Cores/node

6 3 1 6 1 8 1 8 1 8
12 6 2 6 2 8 1 8 1 8
24 12 4 6 4 8 1 8 2 8
48 24 8 6 8 8 2 8 4 8
96 48 16 6 16 8 3 8 6 8

192 96 32 6 32 8 6 8 12 8

4 2 1 4 1 8 1 8
8 4 1 8 1 8 1 8

12 6 2 6 1 8 1 8
24 12 4 6 1 8 2 6
48 24 8 6 2 8 3 8
96 48 16 6 3 8 6 8

192 96 32 6 6 8 12 8
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in Configuration 4. These configurations thus represent the other extreme end of the configuration space and a reasonable
intermediate point to evaluate granularity effects in terms of energy to solution.

As already argued previously, we continue to measure time and now also energy to solution. The only difference with
respect to the previous results is that for FEAST we sum up the timings for the assembly and the linear solver for simplicity.

8.2.3. Energy measurement approach
All LiDOng numbers are based on samples obtained by the HP-Health-Monitor software daemon. This software is only

installed on one node and thus we cannot generate true energy profiles for full runs. This daemon service samples at a gran-
ularity of one second into some log file, and all power consumption readings for LiDOng are based on histograms obtained
from matching time stamps from the actual runs with time stamps in this log. Since the load per node does not vary within
one run, sampling a single node is not a limitation for our tests. We pursue the same generic measurement approach on Tib-
idabo and restrict the measurements to a single node. As a baseline sample point we state a measured 6.3 W for a completely
idle Tibidabo node and 58 W for a completely idle LiDOng node when all its cores have downclocked.

We emphasise that in all our tests we explicitly exclude the power of network switches, but do include the energy con-
sumed by the network card and also by the local disk drive in a LiDOng node. Given that current Ethernet technologies do not
have a linear relationship between the network usage and power consumption, a 10% network utilisation may lead to usage
of over 90% of peak switch power [70]. We purport that both machines could be equipped with a similar full-crossbar switch,
which would only offset all our measurements (integrated or rather summed up over all nodes) by a constant additive term,
that furthermore would be the same for all applications. For Tibidabo configurations that use up to 48 cores, both Tibidabo
and LiDOng will use a single network switch, and we can assume that the additive term for switching power is the same in
both cases, and for larger configurations Tibidabo will spend more power for the network. Due to significant difference in
multicore density of the two systems (2 cores per node in Tibidabo and 8 cores per node in LiDOng), Tibidabo will always
require more nodes and network switches to execute the same problem size as LiDOng, and we expect this to change in
the next generation of ARM-based products with more cores per chip, so in order to have a fair comparison we exclude
the switching power.

On the Nehalem nodes we observe substantial differences in power consumption depending on the load of the machines
(amount of active cores, amount of allocated memory); energy measurements all lie between roughly 210 and 310 W. On
Tibidabo, the actual application (and memory load) does not have such a large impact owing to the overall large fixed, static
power consumption of the node (see Section 6): In our tests, power consumption varies between 6.8 and 7.6 W per node
depending on the various applications’ dynamic load.

8.2.4. Time and energy to solution
For FEAST, Fig. 4(a) and (b) show the speedup of the four Dortmund configurations over the baseline executions on Tib-

idabo, and the improvement in terms of energy to solution of Tibidabo, See also Table 2 for auxiliary data related to the map-
ping of the various configurations to cores and nodes. The most important observation is that for all problem sizes and
mappings to the LiDOng machine, Tibidabo is more energy-efficient. We highlight the most important representative data
points from the two plots: Looking at the smallest problem first, we see that Tibidabo is only 3–14% more energy efficient,
but it takes roughly 15 times longer to solve this problem. Note however that this problem size does not require any off-node
traffic on Nehalem, all MPI communication is performed via the shared memory mechanism of OpenMPI. On the other hand,
for the largest problem under consideration, the fastest Configuration 2 results in a speedup of only four of x86 over ARM,
while the latter is almost three times more energy-efficient. Even when using only the minimum number of x86 nodes to
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Fig. 4. FEAST: Speedup in time to solution of x86 over ARM and improvement in energy to solution of ARM over x86.
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solve the problem (Configuration 3), Tibidabo only takes twice as long and still achieves 16% better energy efficiency. Overall,
the data allow to pick smooth transition points, e.g., how much slower can we afford to be and how much energy would we
save. Also, we see a strict separation (except for the smallest problem that, in all configurations, executes on a single LiDOng
node) between the more strong-scaling oriented first two configurations and the more weak-scaling oriented second two
configurations, as expected.

Similar trends are visible, and in part also more pronounced, for HONEI_LBM, see Fig. 5(a) and (b). We first note that the
differences in energy efficiency improvement are smaller between the four configurations, a direct consequence of the com-
paratively small weak scaling problem sizes chosen for this application. Except for the smallest problem size, Tibidabo is al-
ways more energy-efficient. For Configuration 3 and larger problem sizes we observe almost no speedup on x86, but still
more than a factor of 2.5 improvement in energy to solution by Tibidabo. Looking at the other extreme, i.e., Configuration
2, we see that the x86-based cluster is at most 5.5 times faster, but requires almost three times more energy to achieve this
speedup.

The differences between the two classes of mapping configurations are also less pronounced for SPECFEM3D_GLOBE, as
depicted in Fig. 6(a) and (b). See also Table 2 for auxiliary data related to the mapping of the various configurations to cores
and nodes. Since the speedup of x86 over ARM is on average more than twice higher than for the other two applications,
Tibidabo is not always as energy-efficient as the Nehalem cluster. There are certain granularity effects stemming from lim-
itations in partitioning of SPECFEM3D_GLOBE, e.g., Configuration 3 at the smallest problem size is twice faster than Config-
uration 1 because it uses twice the amount of cores per node. When factoring these effects out, the prototypical ARM-based
cluster is more efficient in terms of energy to solution when compared to the fastest possible solution on x86 using the same
number of cores, but less favourable when compared to the most energy-efficient (and hence slowest) x86 mapping. The
differences are always in the range of 20%, in one direction or the other. The reason for the reduced speedup is that in con-
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Fig. 5. HONEI_LBM: Speedup in time per time step of x86 over ARM and improvement in energy per time step of ARM over x86.
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trast to FEAST, SPECFEM3D_GLOBE is compute- rather than memory-bound for the most part on x86, and the difference in
peak compute performance of the two architectures is much higher than the difference in peak memory bandwidth.
9. Conclusions and outlook

Due to various architectural improvements resulting in increased floating-point performance, processor designs originat-
ing from mobile computing are starting to be of interest in high performance computing. There are two main aspects that
make them particularly worth considering as target architectures: First, in contrast to accelerator-like approaches, no fun-
damental rewrites of production codes are necessary because standard compilers and tool chains have been supported for a
long time already. Second, they promise substantially lower power consumption, which in the exascale era will become the
most important factor in the design of HPC systems.

The extreme energy efficiency compared to x86-based processors is achieved by a substantial reduction in per-core per-
formance. Consequently, more cores (and thus, more nodes) have to be used to solve the same problem in a comparable
amount of time, implying much stricter scalability requirements. But lower power does not automatically translate into low-
er energy, since the computations require either more time, more nodes, or both to finish. In this article, we have quantita-
tively evaluated this trade-off between time- and energy to solution for three representative applications to numerically
solve PDE problems on a cluster of 96 ARM Cortex-A9 dualcore processors and on a 32-node dual-socket Intel Nehalem clus-
ter that provides the same amount of total memory.

We have shown that indeed, substantial reductions in terms of energy to solution are possible at only moderate slow-
downs compared to the x86-based cluster. The transitions between various time and energy targets allow to answer ques-
tions such as ‘how much slower can the simulation afford to be for certain energy savings’ and of course, the other way
around. However, for one application that is compute-bound on x86 already, the difference between the peak floating point
performance of the two architectures is too large to achieve a gain in energy efficiency.

Several important avenues for future work arise from our findings: First, the next generations of ARM processor designs
have been announced to more than double floating point performance through SIMD features, higher clock rates and larger
caches, at only very moderately increased power consumption. We thus believe that in the near future, all applications will
be more energy-efficient on clusters built from these designs than on conventional ones. Since this improvement affects only
the ‘CPU’ component of such clusters, the comparatively large static power consumption that we observed in our prototype
cluster, i.e., power consumption for components and system integration that do not contribute to compute, will play a less
dominant role. Once the GPU components of the SoC become properly programmable, their use will further boost energy
efficiency, albeit at the loss of the programmability advantage outlined above. Finally, in view of the exascale era, the reli-
ability and mean-time-between-failure of clusters built from ARM processors will have to be examined: In their original
market of mobile computing, SoC built around ARM processors are designed for maximum reliability, but in HPC installa-
tions a great number of them needs to be included into a system, increasing the probability of failures. This problem is com-
mon to all exascale architectures (see e.g. [71]), not specific to ARM-based systems.
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